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A complete solution of the mathematical problem for the 
behaviour of the flexoelectric domains in a d.c. voltage 
for the case of anisotropic elasticity♣ 
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The solution of the Euler-Lagrange equations for the director components ny=f1(z)sinqy and nz=f2(z)cosqy, where q is the 
wave number of the flexoelectric domains of Vistin’-Pikin-Bobylev, has been for the first time exactly found with the aid of 
matrix calculations for the case of a planar nematic layer with anisotropic elasticity and a negative dielectric anisotropy 
under the action of an inhomogeneous d.c. flexoelectrically deforming electric field. A comparison is made with another, 
approximate, solution for anisotropic elasticity and a homogeneous electric field. A discussion of the eventual applications 
of this solution is also presented. 
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1. Introduction  
 
DC voltage-induced static domains oriented along the 

initial alignment of the nematic director n with an 
electrically controlled period have been observed for the 
first time by Vistin’ [1]. This author has observed that the 
period of the domains decreases with increasing voltage. 
Bobylev and Pikin [2] first proved the flexoelectric nature 
of these domains, by developing a theory for the case of 
isotropic elasticity. They obtained simple relations for the 
threshold voltage Uc and the wave number qc of the 
flexoelectric domains (details can be found in the review 
by Pikin [3]). Their simple theory was later extended  by 
Bobylev, Chigrinov and Pikin [4] and by Pikin [5,6], for 
the case of anisotropic elasticity and an equal exponential 
dependence along z of both components of the director. 
New theories [7-9] have considered the influence of the 
flexoelectric effect on the thermal fluctuations of the 
nematic director [10] and shed new light on the 
appearance and development of the flexoelectric domains 
of Vistin’-Pikin-Bobylev. The authors of these theories 
have used the matrix analysis [11,12].  

In this paper, we present the complete solution of the 
problem based on the theoretical results of Romanov and 
Sklyarenko for our concrete case (some of the detailed 
matrix calculations are given elsewhere [13]). Let us first 
mention that the flexoelectric term due to eventual 

inhomogeneity of the electric field (e1z+e3x)(dE/dz) was 
included in the final solution of the problem under 
consideration. 

 
2. Theory and results  
 
The minimization of the “electric enthalpy” with 

respect to the director components ny and nz and their 
derivatives with respect to the coordinates y and z yields 
two equations of Euler-Lagrange. Performing the 
calculations, taking into account that n is a unit vector and 
accepting that 
 

qyzfny sin)(1= , qyzfnz cos)(2=  
 
(see References [2], [4], [8] and [14]), finally we have 
obtained the following two equations for the unknown 
arbitrary functions f1(z) and f2(z) which we represent in a 
matrix form in the following way: 
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The matrices 0Â , Ĉ , D̂  and f̂  can be represented in the 
following forms:  
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The sum of the operators in Eq. (1) cannot be 

presented in a diagonal form by a transformation of 
similarity, since it is not self-conjugated. Consequently, 
we must transform Eq. (1) so that the left-hand side 
contains an operator admitting diagonalization. For this 
purpose, following Romanov and Skljarenko we transform 
Eq. (1) as follows: First, we multiply Eq. (1) from the left 
by the inverse matrix 1ˆ −D : 
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The inverse matrix 1ˆ −D  has the following form: 
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As a second step, we multiply the term in Eq. (2) which is 
in parentheses by the following term: 
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Introducing the new variable: ff
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performing the differentiation with respect to z in 
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we have obtained the following operator equation: 
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Finally, multiplying Eq. (3) from the left by 
z

2

ˆˆ CD

e , we 
have obtained another operator equation: 
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The matrices of rotation are connected with the anisotropy 
of the elasticity [9], [14]: 
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(detailed calculations are given elsewhere [13]). 
 

The next step in the calculations is the introduction of a 
new matrix p

qB̂ , which can be made diagonal: 
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where the index q is obvious and the index p means 
“planar”. Multiplying the matrix p

qB̂  from the left by the 

inverse matrix 1ˆ −V of the eigenvectors of p
qB̂  and the 

matrix 1̂f by V̂ 1ˆ −V =1, we obtain: 
 

 0ˆˆˆˆˆ
1

1p
q

1 =−− fVVBV                              (7)   
where 
  

( ) ( )

uu
K
K

pw
K
K

pw

−−

+−=
11

22

11

22

V̂  

( )
2

2sincossin 22 bafbaw +
+−−−= ααα  

2
2

2
fbap +⎟

⎠
⎞

⎜
⎝
⎛ −

=  

( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= αα 2cos2sin

2
fabu  

 
 (detailed calculations are given elsewhere [13]). 
 
Introducing 21

1 ˆˆˆ ffV =−  and  VBVW ˆˆˆˆ p
q

1−= , we  
obtain: 
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The diagonal matrix Ŵ  has the following form: 
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Going back to the matrix f̂ via the following 
transformations: 
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we have obtained finally the solution for the two functions 
f1(z) and f2(z): 
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where f21(z) and f22(z) are the solutions of the following 
two equations:  
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Let us represent Q in the following more convenient form: 
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(where d is the thickness of the liquid crystal cell) 
 

fbQ −≅2                                      (15) 
 
Similarly, 

faP +≅2                                      (16) 
 

We can solve the equations (12) exactly or 
approximately, accepting a certain form of the electric 
field: linear, hyperbolic, exponential, etc. and the 
approximate values of P and Q. 

 
 
2. Conclusions 
 
The solution of the problem concerning the 

flexoelectric domains with anisotropic elasticity is not 
only a mathematical one. Firstly, it clarifies the influence 
of the different physical parameters on the creation and 
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development of the flexoelectric domains. For instance, 
the threshold characteristics such as the threshold voltage 
Uc and the threshold wave number qc in the case of strong 
anchoring have been obtained [15,16]. These results 
unambiguously show that there is a limit in the ratio 
K22/K11 permitting the development of the flexoelectric 
domains. In contrast, the anisotropic approximate theory 
[4] does not show such a limit. 
Secondly, the flexoelectric term, depending on the   
inhomogeneity of the electric field (e1z+e3x)(dE/dz), was 
included in the final solution of the problem under 
consideration. 

 In general, the complete solution of the problem can 
find application in  more complex cases, such as the 
development of the flexoelectric domains in 
simultaneously applied d.c. and a.c. voltages., weak 
anchoring, strong-weak anchoring, etc. 
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